3.538 \(\int \sqrt{a+b x} \sqrt{c+d x} \, dx\)

Optimal. Leaf size=116 \[ -\frac{(b c-a d)^2 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{4 b^{3/2} d^{3/2}}+\frac{\sqrt{a+b x} \sqrt{c+d x} (b c-a d)}{4 b d}+\frac{(a+b x)^{3/2} \sqrt{c+d x}}{2 b} \]

[Out]

((b*c - a*d)*Sqrt[a + b*x]*Sqrt[c + d*x])/(4*b*d) + ((a + b*x)^(3/2)*Sqrt[c + d*
x])/(2*b) - ((b*c - a*d)^2*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x
])])/(4*b^(3/2)*d^(3/2))

_______________________________________________________________________________________

Rubi [A]  time = 0.121118, antiderivative size = 116, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158 \[ -\frac{(b c-a d)^2 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{4 b^{3/2} d^{3/2}}+\frac{\sqrt{a+b x} \sqrt{c+d x} (b c-a d)}{4 b d}+\frac{(a+b x)^{3/2} \sqrt{c+d x}}{2 b} \]

Antiderivative was successfully verified.

[In]  Int[Sqrt[a + b*x]*Sqrt[c + d*x],x]

[Out]

((b*c - a*d)*Sqrt[a + b*x]*Sqrt[c + d*x])/(4*b*d) + ((a + b*x)^(3/2)*Sqrt[c + d*
x])/(2*b) - ((b*c - a*d)^2*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x
])])/(4*b^(3/2)*d^(3/2))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 15.5339, size = 97, normalized size = 0.84 \[ \frac{\sqrt{a + b x} \left (c + d x\right )^{\frac{3}{2}}}{2 d} + \frac{\sqrt{a + b x} \sqrt{c + d x} \left (a d - b c\right )}{4 b d} - \frac{\left (a d - b c\right )^{2} \operatorname{atanh}{\left (\frac{\sqrt{d} \sqrt{a + b x}}{\sqrt{b} \sqrt{c + d x}} \right )}}{4 b^{\frac{3}{2}} d^{\frac{3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((b*x+a)**(1/2)*(d*x+c)**(1/2),x)

[Out]

sqrt(a + b*x)*(c + d*x)**(3/2)/(2*d) + sqrt(a + b*x)*sqrt(c + d*x)*(a*d - b*c)/(
4*b*d) - (a*d - b*c)**2*atanh(sqrt(d)*sqrt(a + b*x)/(sqrt(b)*sqrt(c + d*x)))/(4*
b**(3/2)*d**(3/2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.0685199, size = 110, normalized size = 0.95 \[ \sqrt{a+b x} \sqrt{c+d x} \left (\frac{a d+b c}{4 b d}+\frac{x}{2}\right )-\frac{(b c-a d)^2 \log \left (2 \sqrt{b} \sqrt{d} \sqrt{a+b x} \sqrt{c+d x}+a d+b c+2 b d x\right )}{8 b^{3/2} d^{3/2}} \]

Antiderivative was successfully verified.

[In]  Integrate[Sqrt[a + b*x]*Sqrt[c + d*x],x]

[Out]

((b*c + a*d)/(4*b*d) + x/2)*Sqrt[a + b*x]*Sqrt[c + d*x] - ((b*c - a*d)^2*Log[b*c
 + a*d + 2*b*d*x + 2*Sqrt[b]*Sqrt[d]*Sqrt[a + b*x]*Sqrt[c + d*x]])/(8*b^(3/2)*d^
(3/2))

_______________________________________________________________________________________

Maple [B]  time = 0., size = 305, normalized size = 2.6 \[{\frac{1}{2\,d}\sqrt{bx+a} \left ( dx+c \right ) ^{{\frac{3}{2}}}}+{\frac{a}{4\,b}\sqrt{bx+a}\sqrt{dx+c}}-{\frac{c}{4\,d}\sqrt{bx+a}\sqrt{dx+c}}-{\frac{d{a}^{2}}{8\,b}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\ln \left ({1 \left ({\frac{ad}{2}}+{\frac{bc}{2}}+bdx \right ){\frac{1}{\sqrt{bd}}}}+\sqrt{d{x}^{2}b+ \left ( ad+bc \right ) x+ac} \right ){\frac{1}{\sqrt{bx+a}}}{\frac{1}{\sqrt{dx+c}}}{\frac{1}{\sqrt{bd}}}}+{\frac{ac}{4}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\ln \left ({1 \left ({\frac{ad}{2}}+{\frac{bc}{2}}+bdx \right ){\frac{1}{\sqrt{bd}}}}+\sqrt{d{x}^{2}b+ \left ( ad+bc \right ) x+ac} \right ){\frac{1}{\sqrt{bx+a}}}{\frac{1}{\sqrt{dx+c}}}{\frac{1}{\sqrt{bd}}}}-{\frac{{c}^{2}b}{8\,d}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\ln \left ({1 \left ({\frac{ad}{2}}+{\frac{bc}{2}}+bdx \right ){\frac{1}{\sqrt{bd}}}}+\sqrt{d{x}^{2}b+ \left ( ad+bc \right ) x+ac} \right ){\frac{1}{\sqrt{bx+a}}}{\frac{1}{\sqrt{dx+c}}}{\frac{1}{\sqrt{bd}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((b*x+a)^(1/2)*(d*x+c)^(1/2),x)

[Out]

1/2/d*(b*x+a)^(1/2)*(d*x+c)^(3/2)+1/4/b*(d*x+c)^(1/2)*(b*x+a)^(1/2)*a-1/4/d*(d*x
+c)^(1/2)*(b*x+a)^(1/2)*c-1/8*d/b*((b*x+a)*(d*x+c))^(1/2)/(d*x+c)^(1/2)/(b*x+a)^
(1/2)*ln((1/2*a*d+1/2*b*c+b*d*x)/(b*d)^(1/2)+(d*x^2*b+(a*d+b*c)*x+a*c)^(1/2))/(b
*d)^(1/2)*a^2+1/4*((b*x+a)*(d*x+c))^(1/2)/(d*x+c)^(1/2)/(b*x+a)^(1/2)*ln((1/2*a*
d+1/2*b*c+b*d*x)/(b*d)^(1/2)+(d*x^2*b+(a*d+b*c)*x+a*c)^(1/2))/(b*d)^(1/2)*a*c-1/
8/d*((b*x+a)*(d*x+c))^(1/2)/(d*x+c)^(1/2)/(b*x+a)^(1/2)*ln((1/2*a*d+1/2*b*c+b*d*
x)/(b*d)^(1/2)+(d*x^2*b+(a*d+b*c)*x+a*c)^(1/2))/(b*d)^(1/2)*c^2*b

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x + a)*sqrt(d*x + c),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.256181, size = 1, normalized size = 0.01 \[ \left [\frac{4 \,{\left (2 \, b d x + b c + a d\right )} \sqrt{b d} \sqrt{b x + a} \sqrt{d x + c} +{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \log \left (-4 \,{\left (2 \, b^{2} d^{2} x + b^{2} c d + a b d^{2}\right )} \sqrt{b x + a} \sqrt{d x + c} +{\left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 8 \,{\left (b^{2} c d + a b d^{2}\right )} x\right )} \sqrt{b d}\right )}{16 \, \sqrt{b d} b d}, \frac{2 \,{\left (2 \, b d x + b c + a d\right )} \sqrt{-b d} \sqrt{b x + a} \sqrt{d x + c} -{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \arctan \left (\frac{{\left (2 \, b d x + b c + a d\right )} \sqrt{-b d}}{2 \, \sqrt{b x + a} \sqrt{d x + c} b d}\right )}{8 \, \sqrt{-b d} b d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x + a)*sqrt(d*x + c),x, algorithm="fricas")

[Out]

[1/16*(4*(2*b*d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c) + (b^2*c^2
- 2*a*b*c*d + a^2*d^2)*log(-4*(2*b^2*d^2*x + b^2*c*d + a*b*d^2)*sqrt(b*x + a)*sq
rt(d*x + c) + (8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 8*(b^2*c*d + a*b*
d^2)*x)*sqrt(b*d)))/(sqrt(b*d)*b*d), 1/8*(2*(2*b*d*x + b*c + a*d)*sqrt(-b*d)*sqr
t(b*x + a)*sqrt(d*x + c) - (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*arctan(1/2*(2*b*d*x +
 b*c + a*d)*sqrt(-b*d)/(sqrt(b*x + a)*sqrt(d*x + c)*b*d)))/(sqrt(-b*d)*b*d)]

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \sqrt{a + b x} \sqrt{c + d x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x+a)**(1/2)*(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a + b*x)*sqrt(c + d*x), x)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.229924, size = 189, normalized size = 1.63 \[ \frac{{\left (\sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \sqrt{b x + a}{\left (\frac{2 \,{\left (b x + a\right )}}{b^{4} d^{2}} + \frac{b c d - a d^{2}}{b^{4} d^{4}}\right )} + \frac{{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )}{\rm ln}\left ({\left | -\sqrt{b d} \sqrt{b x + a} + \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \right |}\right )}{\sqrt{b d} b^{3} d^{3}}\right )}{\left | b \right |}}{96 \, b^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x + a)*sqrt(d*x + c),x, algorithm="giac")

[Out]

1/96*(sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a)*(2*(b*x + a)/(b^4*d^2) +
 (b*c*d - a*d^2)/(b^4*d^4)) + (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*ln(abs(-sqrt(b*d)*
sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/(sqrt(b*d)*b^3*d^3))*abs(b
)/b^3